The Empirical Rule: Word problems

Definition: A probability distribution modeled by a bell-shaped curve (also called a normal curve) that is symmetric about the mean.

$$
\begin{gathered}
\boldsymbol{\sigma}=\text { standard deviation of the data set } \\
\mu=\text { mean of the data set }
\end{gathered}
$$

Properties of the Bell Curve

- 68% of the data lies within 1 standard deviation of the mean
- $\mathbf{9 5 \%}$ of the data lies within $\mathbf{2}$ standard deviations of the mean
- $\mathbf{9 9 . 7 \%}$ of the data lies within $\mathbf{3}$ standard deviations of the mean

Example: At State University, 2000 freshmen took a math test. The scores were distributed normally with a mean of 70 and a standard deviation of 5 . Label the mean and three standard deviations from the mean.
(a) What percentage of scores are between scores 65 and 75 ?
(b) What percentage of scores are between scores 60 and 70?
(c) What percentage of scores are between scores 60 and 85 ?

(e) What percentage of scores is greater than a score of 80 ?
(f) Approximately how many biology students scored between 60 and 70 ?

You try...

1. At Central High School, 500 juniors took the ACT last year. The scores were distributed normally with a mean of 24 and a standard deviation of 4 . Label the mean and three standard deviations from the mean.
(a) What percentage of scores are between scores 20 and 28?
(b) What percentage of scores are between scores 16 and 32 ?
(c) What percentage of scores are between scores 16 and 28 ?
(d) What percentage of scores is less than a score of 12 ?

(e) What percentage of scores is greater than a score of 24 ?
(f) Approximately how many juniors scored between 24 and 28 ?
2. The math scores for an exam for the state of Georgia are normally distributed with a mean of 496 and a standard deviation of 109.
(a) About what percent of the test-takers received scores between 387 and 605?
(b) What percent of test-takers received scores between 496 and 714 ?

169278387496605714823
3. The data set below gives the distances, in miles, that the employees in a small office travel to work each day. Determine the range, in miles, in which 68% of the employees travel to work each day.

Hint: Complete the bell curve to help answer this question.

$12,15,11,8,11,13,10,16$

4. A data set is bell-shaped with a mean of 319 . If 95% of the data lies between 205 and 433 , what is the
 standard deviation?
5. A data set is normally distributed with a mean of 127 and a standard deviation of 81 . What percentage of data should lie between 127 and 370 ?

6. The mean life of a tire is $30,000 \mathrm{~km}$. The standard deviation is 2000 km .
(a) 68% of all tires will have a life between \qquad km and
\qquad km.
(b) 95% of all tires will have a life between \qquad km and
\qquad km .
(c) What percent of the tires will have a life that exceeds 26,000 km?

(d) If a company purchased 2000 tires, how many tires would you expect to last more than 28000 km?
